Testing Methods for
Textured Filament Yarns

2007 Edition
(This edition replaces the 1989 edition)
SCOPE

These methods apply to textile textured filament yarns based on polyester and polyamide.

Textile textured filament yarns are mainly being further processed through warp- and weft-knitting and weaving, whilst textured carpet yarns are mainly being further processed through tufting.

Note: that separate booklets apply for untextured yarns and textured filament carpet yarns.

Acknowledgement to the people involved in the revision of the 2007 version

Mr. I. Mikkelsen Trevira
Mr. V. Köln Trevira
Mr. K. Karlsen Trevira
Mr. A. Robinson Advansa
Ms. J. Louwagie University of Gent
Mr. J. Spijkers BISFA

© BISFA 2007
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission from the publisher.

BISFA
Avenue E. Van Nieuwenhuyse 4
B - 1160 Brussels
Belgium
Email: tun@cirfs.org
Website: http://www.bisfa.org
CONTENTS

Scope 2

Introduction 10

Preface 11

Chapter 1 GENERAL RULES FOR SETTLING OF DISPUTES 12

Chapter 2 DEFINITIONS 14

Chapter 3 SAMPLING 23

3.1 General remarks 23

3.2 Taking the consignment sample and the number of containers to be sampled 23

3.3 Taking the laboratory samples for determination of commercial mass 24
 3.3.1 Determination of invoice mass and gross mass of the consignment sample 24
 3.3.2 Taking packages from the containers of the consignment sample 24
 3.3.3 Determination of the net mass of sampled containers 25

3.4 Taking laboratory samples for determination of properties other than commercial mass 25
 3.4.1 Packages to be used as laboratory samples 25

Chapter 4 DETERMINATION OF COMMERCIAL MASS 26

4.1 Scope 26

4.2 References 26

4.3 Principle 26
 4.3.1 General 26
 4.3.2 Conventional allowance 26
 4.3.3 Sized or oiled yarns 27
 4.3.4 Dyed or spuncoloured yarns 27

4.4 Apparatus, materials and reagents 27
 4.4.1 Apparatus and materials 27
 4.4.2 Reagents 27
4.5 Test procedure
 4.5.1 Preparing the laboratory samples and test specimens for determination of commercial mass 28
 4.5.2 Drying conditions 28
 4.5.3 Determining the mass of the test specimen 29
 4.5.4 Cleaning of test specimens 29
 4.5.5 Determining the oven-dry mass of the test specimens 29

4.6 Data to be collected 30

4.7 Calculation of results and statistical evaluation 30
 4.7.1 Calculation of properties 30
 4.7.2 Statistical evaluation 31

4.8 Verification of invoice mass 31

4.9 Presentation of results 31

4.10 Example of verification of invoiced mass 31
 4.10.1 General 31
 4.10.2 Consignment to be verified 32
 4.10.3 Collected data 32
 4.10.4 Calculations 34
 4.10.5 Verification of invoiced mass 35

Chapter 5 DETERMINATION OF TWIST 36

5.1 Scope 36

5.2 References 36

5.3 Principle 36

5.4 Apparatus 36
 5.4.1 Instrument 36
 5.4.2 Auxiliary devices 37

5.5 Test procedure 37
 5.5.1 Operating conditions 37
 5.5.2 Preparing the test specimens and performing the test for single yarns 37
 5.5.3 Testing folded yarn 38

5.6 Data to be collected 38

5.7 Calculation of properties and statistical evaluation 39
 5.7.1 Calculation of properties 39
 5.7.2 Statistical evaluation 39

5.8 Designation of yarns 39

5.9 Presentation of results 40
5.10 Tolerance

Chapter 6 DETERMINATION OF INTERMINGLING

6.1 Scope

6.2 Principle

6.3 Apparatus
 6.3.1 Visual testing
 6.3.2 Special equipment

6.4 Test procedure
 6.4.1 Operating conditions
 6.4.2 Preparing the test specimens and performing the test

6.5 Data to be collected

6.6 Statistical evaluation
 6.6.1 Laboratory samples
 6.6.2 Consignment sample
 6.6.3 Number of additional test of laboratory samples

6.7 Presentation of results

6.8 Tolerance

Chapter 7 DETERMINATION OF LINEAR DENSITY

7.1 Scope

7.2 References

7.3 Principle

7.4 Apparatus, materials and reagents
 7.4.1 Skein winding reel
 7.4.2 Balance
 7.4.3 Apparatus and materials for cleaning of test specimens

7.5 Test procedure
 7.5.1 Operating conditions
 7.5.2 Preparing the test specimens and performing the test

7.6 Data to be collected

7.7 Calculation of properties and statistical evaluation
 7.7.1 Calculation of properties
 7.7.2 Statistical evaluation

7.8 Presentation of results
7.9 Tolerance

Chapter 8 TENSILE PROPERTIES

8.1 Scope

8.2 References

8.3 Principle

8.4 Apparatus
 8.4.1 Tensile tester
 8.4.2 Clamps

8.5 Test procedure
 8.5.1 Operating conditions
 8.5.2 Preparation of test specimen and performance of test
 8.5.3 Performance of test
 8.5.4 Number of tests
 8.5.5 Test deficiencies
 8.5.6 Modifications to the test procedure

8.6 Data to be collected

8.7 Calculation of properties and statistical evaluation
 8.7.1 Calculation of properties
 8.7.2 Statistical evaluation

8.8 Presentation of results

8.9 Tolerance

Chapter 9 DETERMINATION OF SPINFINISH INCL. CONING OIL

9.1 Scope

9.2 References

9.3 Principle

9.4 Apparatus, materials and reagents
 9.4.1 Apparatus and materials
 9.4.2 Reagents

9.5 Test procedure
 9.5.1 Preparing the test specimens and performing the test
 9.5.2 Determining the dry mass of the specimen
 9.5.3 Cleaning of specimens
 9.5.4 Drying of test specimens and determining of cleaned dry mass

9.6 Data to be collected

9.7 Calculation of properties and statistical evaluation
Chapter 10 DETERMINATION OF CRIMP CONTRACTION 61

10.1 Scope 61

10.2 References 61

10.3 Principle 61

10.4 Apparatus 61

10.4.1 A skein winding reel preferable automatic operated 61

10.4.2 A length measuring stand 62

10.4.3 A ventilated oven 62

10.4.4 Tension weights suitable for loading the skeins 62

10.4.5 Accuracy requirements 62

10.5 Test procedure 62

10.5.1 Operating conditions 62

10.5.2 Preparing test specimens 63

10.5.3 Development of crimp of the specimens 63

10.5.4 Mounting of test specimens and performing of test 63

10.6 Data to be collected 64

10.7 Calculation of properties and statistical evaluation 64

10.7.1 Calculation of properties 64

10.7.2 Statistical evaluation 64

10.8 Presentation of results 65

10.9 Tolerance 65

Chapter 11 DETERMINATION OF HOT-AIR SHRINKAGE 66

11.1 Scope 66

11.2 References 66

11.3 Principle 66

11.4 Apparatus 66

11.4.1 Skein-winding reel 66

11.4.2 Length measuring stand 66

11.4.3 Ventilated oven for temperature up to 250°C 66

11.4.4 Additional equipment 67

11.5 Test procedure 67
11.5.1 Operating conditions
11.5.2 Preparing the test specimens
11.5.3 Measuring the initial length of the test specimens
11.5.4 Thermal treatment of the test specimens
11.5.5 Measuring the length of the test specimens after treatment

11.6 Data to be collected
11.7 Calculation of properties and statistical evaluation
 11.7.1 Calculation of shrinkage
 11.7.2 Statistical evaluation
 11.7.3 Number of additional tests of laboratory samples
11.8 Presentation of results
11.9 Tolerance

Chapter 12 DETERMINATION OF BOILING WATER SHRINKAGE

12.1 Scope
12.2 References
12.3 Principle
12.4 Apparatus
 12.4.1 Skein winding wheel
 12.4.2 Length measuring stand
 12.4.3 Water vessel
 12.4.4 Additional means
12.5 Test procedure
 12.5.1 Operating conditions
 12.5.2 Preparing the test specimens
 12.5.3 Measuring the initial length of the test specimens
 12.5.4 Thermal treatment of the test specimens
 12.5.5 Measuring the length of the test specimens after treatment
12.6 Data to be collected
12.7 Calculation of properties and statistical evaluation
 12.7.1 Calculation of properties
 12.7.2 Statistical evaluation
12.8 Presentation of results
12.9 Tolerance

Chapter 13 THE STATISTICS: TERMINOLOGY AND CALCULATIONS

13.1 Definitions
13.2 Basic Statistics
 13.2.1 Individual value 76
 13.2.2 Frequency distribution 76
 13.2.3 Frequency 76
 13.2.4 Arithmetic mean 76
 13.2.5 Overall arithmetic mean 77
 13.2.6 Variance and standard deviation 77
 13.2.7 Coefficient of variation 78
 13.2.8 Confidence limits 78
 13.2.9 Number of tests 79

13.3 Statistical process control (SPC) 80
 13.3.1 Process capability 80
 13.3.2 Accuracy index 80
 13.3.3 Capability index 80
 13.3.4 Quality index 80

Appendix I 83

Appendix II 87